Acta Cryst. (1973). B29, 2649

The crystal structure of twinned $Cd_5(PO_4)_3Cl$, 'cadmium chlorapatite': erratum. By K. SUDARSANAN and R. A. YOUNG, Georgia Institute of Technology, Atlanta, Georgia 30332, U.S.A. and J. D. H. DONNAY, The Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.

(Received 13 July 1973: accepted 14 July 1973)

The bond angles and interatomic distances listed in the original paper [Sudarsanan, Young & Donnay (1973). Acta Cryst, B29, 808-814] were inadvertently taken from calculations based on a set of temporarily used values of the lattice parameters. The correct values, based on the final lattice-parameter values included in the paper, are given. The largest correction thus made to any distance is 0.3 %, e.g., 0.010 Å in the Cd₁₁-O₁ distance.

The correct values of the bond angles and interatomic distances listed in Table 4 of the original paper are as follows:

(a) Bond angles and their standard deviations

$O_I - P - O_{III}$	112·6 (0·1)°
$O_{1} - P - O_{11}$	110.7 (0.1)
O11-P-O111	107.1 (0.1)
O ₁₁₁ –P–O ₁₁₁	106.4 (0.1)
distances and t	heir standard dev

(b) Interatomic viations

D ₁ P	1.525 (1)
D ₁₁ P	1.557 (1)
D111-P	1.540 (1)
O ₁ O ₁₁	2.536 (2)
O11O111	2.490 (2)
$O_1 O_{111}$	2.550 (2)
$O_{111} - O_{111}$	2.467 (2)

$Cd_1 - O_1$	2.310(1)
$Cd_1 - O_1$	2.376 (1)
$Cd_1 - O_{111}$	2.871(2)
Cd ₁₁ –O ₁	3.148(2)
Cd _{II} -O _{III}	$2 \cdot 202(1)$
$Cd_{II} - O''_{III}$	2.460(1)
Cd _{II} -O _{II}	2.246(2)
Cd _{II} -Cl	2.537 (1)

2.210 (1)

We thank Dr Larry Boyer, Princeton University, for drawing our attention to this oversight.

Reference

SUDARSANAN, K., YOUNG, R. A. & DONNAY, J. D. H. (1973). Acta Crvst. B29, 808-814.

Acta Cryst. (1973). B29, 2649

The crystal structures of tropolone and 4-isopropyltropolone: a comparison. By T. A. HAMOR and J. E. DERRY,

Chemistry Department, The University, Birmingham B15 2TT, England

(Received 9 July 1973; accepted 10 July 1973)

Comparison of bond lengths determined by X-ray crystal structure analyses indicates that the degree of π -electron delocalization is smaller in 4-isopropyltropolone than in tropolone, but in both molecules it is greater than that predicted by SCF MO calculations.

In a recent paper on the crystal structure of 4-isopropyltropolone (IPT) (Derry & Hamor, 1972), it was noted that the bond lengths did not agree with those observed in the crystal structure of tropolone by Shimanouchi & Sasada (1970), where, apart from a long C(1)-C(2) bond of 1.452 Å, ring bond lengths (mean 1.407 Å) are close to the aromatic value and there is no alternation in length. IPT, in contrast, exhibits bond-length alternation in the sense predicted by the classical valence bond structure, with the C(1)-C(2) length 1.469 Å, close to the $C(sp^2)-C(sp^2)$ singlebond value. The other C-C formal single bonds average 1.416 Å and the double bonds 1.362 Å, respectively shorter and longer than pure single and double bonds, so that the π -electron system is partially delocalized. The carbonoxygen bonds are also involved in the electron delocalization as indicated by the lengths, C(1)-O(1) = 1.261 and C(2)-O(2) = 1.349 Å. A revised report on the tropolone structure, based on re-measured intensities, has now appeared (Shimanouchi & Sasada, 1973). This indicates that there is in fact bond-length alternation in the ring, in agreement with the situation in IPT. Bond lengths from these three studies are listed in Table 1, with the results of a MO treatment cf tropolone (Dewar semi-empirical SCF & Trinajstic, 1970).

Generally, the revised bond lengths for tropolone agree fairly well with those in IPT. A closer examination, however, reveals certain differences which follow a systematic trend. The C(1)-C(2) bond in tropolone is shorter by 0.015 Å than the corresponding bond in IPT and the other formal C-C single bonds average 1.404 Å, shorter by 0.012 Å than the average in IPT. The double bonds average 1.364 Å, very slightly longer than the average in IPT (1.362 Å). The indication, therefore, is that the π -electron system is delocalized to a slightly smaller extent in IPT than in tropolone. Consistent with this, the C(2)-O(2) bond length is shorter by 0.016 Å in tropolone. The C(1)-O(1) lengths are, how-